Муравей живет на бесконечной квадратной решетке из клеток, и первоначально все они белые. Он всегда носит с собой неиссякаемый горшочек с черной краской и такой же горшочек с белой краской. Он может идти на север, на восток, на юг или на запад. Из соображений симметрии скажем, что первый шаг он делает на север. В каждый момент времени муравей смотрит на цвет клетки, в которой оказался, и перекрашивает ее из черной в белую или из белой в черную. Если клетка была белой, то после перекрашивания муравей поворачивает на 90° направо и делает один шаг вперед. Если клетка была черной, то он поворачивает на 90° налево и делает то же самое. И так до бесконечности. Если вы смоделируете поведение муравья, то сначала он будет рисовать простой симметричный узор из белых и черных квадратов. Время от времени он возвращается на клетку, где уже был, но петля при этом не замыкается, потому что цвет клетки изменился, и муравей повернет в другую сторону. Моделирование продолжается, и рисунок становится хаотичным и случайным. При этом в нем невозможно различить никаких закономерностей: в основе своей это просто беспорядок. На этой стадии можно подумать (и вполне здраво), что такое хаотичное поведение будет продолжаться бесконечно. В конце концов, вернувшись в хаотично раскрашенный регион, муравей непременно сделает серию хаотичных шагов. Если вы будете продолжать моделирование, то следующие примерно 10 000 шагов подтвердят ваше предположение. Однако затем, если вы будете настойчивы, проявится закономерность. В движениях муравья возникнет повторяющийся цикл из 104 шагов, в результате которого он проходит две клетки по диагонали. После этого он будет двигаться, прорисовывая широкую диагональную полосу из черных и белых клеток, которую иногда называют магистралью, и так до бесконечности (см. рис. 49).