en
Michael Walker

Data Cleaning and Exploration with Machine Learning

Повідомити про появу
Щоб читати цю книжку, завантажте файл EPUB або FB2 на Букмейт. Як завантажити книжку?
Many individuals who know how to run machine learning algorithms do not have a good sense of the statistical assumptions they make and how to match the properties of the data to the algorithm for the best results.
As you start with this book, models are carefully chosen to help you grasp the underlying data, including in-feature importance and correlation, and the distribution of features and targets. The first two parts of the book introduce you to techniques for preparing data for ML algorithms, without being bashful about using some ML techniques for data cleaning, including anomaly detection and feature selection. The book then helps you apply that knowledge to a wide variety of ML tasks. You’ll gain an understanding of popular supervised and unsupervised algorithms, how to prepare data for them, and how to evaluate them. Next, you’ll build models and understand the relationships in your data, as well as perform cleaning and exploration tasks with that data. You’ll make quick progress in studying the distribution of variables, identifying anomalies, and examining bivariate relationships, as you focus more on the accuracy of predictions in this book.
By the end of this book, you’ll be able to deal with complex data problems using unsupervised ML algorithms like principal component analysis and k-means clustering.
Ця книжка зараз недоступна
672 паперові сторінки
Дата публікації оригіналу
2022
Рік виходу видання
2022
Видавництво
Packt Publishing
Уже прочитали? Що скажете?
👍👎
fb2epub
Перетягніть файли сюди, не більш ніж 5 за один раз