en
Книжки
Fouad Sabry

Contextual Image Classification

What is Contextual Image Classification

A method of classification that is based on the contextual information contained in images is referred to as contextual image classification. This method falls under the category of pattern recognition in computer vision. A “contextual” approach is one that focuses on the relationship between the pixels that are in close proximity to one another, which is also referred to as the neighborhood. The classification of the photographs by the utilization of the contextual information is the objective of this approach.

How you will benefit

(I) Insights, and validations about the following topics:

Chapter 1: Contextual image classification

Chapter 2: Pattern recognition

Chapter 3: Gaussian process

Chapter 4: LPBoost

Chapter 5: One-shot learning (computer vision)

Chapter 6: Least-squares support vector machine

Chapter 7: Fraunhofer diffraction equation

Chapter 8: Symmetry in quantum mechanics

Chapter 9: Bayesian hierarchical modeling

Chapter 10: Paden-Kahan subproblems

(II) Answering the public top questions about contextual image classification.

(III) Real world examples for the usage of contextual image classification in many fields.

Who this book is for

Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of Contextual Image Classification.
704 паперові сторінки
Дата публікації оригіналу
2024
Рік виходу видання
2024
Видавництво
One Billion Knowledgeable
Уже прочитали? Що скажете?
👍👎
fb2epub
Перетягніть файли сюди, не більш ніж 5 за один раз