bookmate game
ru
Алан Тьюринг

Могут ли машины мыслить?

Повідомити про появу
Щоб читати цю книжку, завантажте файл EPUB або FB2 на Букмейт. Як завантажити книжку?
«Может ли машина мыслить?» — едва ли не самая знаменитая статья А. Тьюринга. Даже сейчас, спустя почти 60 лет после ее написания, она, вызвавшая в свое время огромное количество как серьезных исследований, так и псевдонаучных спекуляций, нисколько не утеряла своего значения. Статья написана с юмором и иронией («словно между строк стоят смайлики, по словам Э. Ходжеса, биографа Тьюринга), но за шутливым тоном изложения скрываются одни из самых оригинальных и глубоких идей, высказанных в уходящем веке. «Игра в имитацию», описанная в этой статье, получила название «теста Тьюринга» (ставшего стандартным теоретическим тестом на «интеллектуальность машины»), который, помимо специалистов по кибернетике, интересовал и некоторых психиатров, усмотревших глубинный психоаналитический смысл в цели игры («угадывание пола»). Статья была впервые опубликована в научном журнале Mind, v. 59 (1950), pp. 433–460, под названием Computing Machinery and Intelligence и перепечатана в 4-м томе «Мира математики» Дж.Р. Ньюмена ( The World of Mathematics. A small library… with commentaries and notes by James R. Newman, Simon & Schuster, NY, v. 4, 1956, pp. 2099–2123), где опубликована под заголовком Can the Machine think?
Ця книжка зараз недоступна
64 паперові сторінки
Уже прочитали? Що скажете?
👍👎

Враження

  • Dmitry Tolkachevділиться враженням5 років тому
    👍Раджу
    🙈Нічого не зрозумів

  • Grigorii Guzділиться враженням9 років тому
    🎯Корисна

  • vaganovandrewділиться враженням9 років тому
    👍Раджу
    💡Пізнавальна

Цитати

  • Stas Nikolskiyцитує5 років тому
    6. Возражение леди Лавлейс

    Наиболее подробные сведения, которыми мы располагаем об Аналитической машине Бэббиджа, берутся из воспоминаний леди Лавлейс.[15] В них она высказывает такую мысль: «Аналитическая машина не претендует на то, чтобы создавать что-то действительно новое. Машина может выполнить все то, что мы умеем ей предписать» (курсив леди Лавлейс).
  • Stas Nikolskiyцитує5 років тому
    5. Возражения, исходящие из того, что машина не все может выполнить

    [Arguments from Various Disabilities]

    Обычно эти возражения выражают в такой форме: «Я согласен с тем, что вы можете заставить машины делать все, о чем вы упоминали, но вам никогда не удастся заставить их делать X». При этом перечисляют довольно длинный список значений этого X. Я предлагаю читателю выбирать: «Быть добрым, находчивым, красивым, дружелюбным, быть инициативным, обладать чувством юмора, отличать правильное от неправильного, совершать ошибки, влюбляться, получать удовольствие от клубники со сливками, заставить кого-нибудь полюбить себя, извлекать уроки из своего опыта, правильно употреблять слова, думать о себе, обладать таким же разнообразием в поведении, каким обладает человек, создавать нечто подлинно новое».
  • Stas Nikolskiyцитує5 років тому
    3. Математическое возражение

    Имеется ряд результатов математической логики, которые можно использовать для того, чтобы показать наличие определенных ограничений возможностей машин с дискретными состояниями. Наиболее известный из этих результатов – теорема Гёделя[8] – показывает, что в любой достаточно мощной логической системе можно сформулировать такие утверждения, которые внутри этой системы нельзя ни доказать, ни опровергнуть, если только сама система непротиворечива.

На полицях

fb2epub
Перетягніть файли сюди, не більш ніж 5 за один раз